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Surrogates for finding unstable periodic orbits in noisy data sets

Kevin Dolan,1 Annette Witt,2 Mark L. Spano,3 Alexander Neiman,1 and Frank Moss1
1Center for Neurodynamics, University of Missouri at St. Louis, St. Louis, Missouri 63121

2Department of Physics, University of Potsdam, Potsdam 14415, Germany
3NSWC, Carderock Laboratory, West Bethesda, Maryland 20817

~Received 14 December 1998!

Recently, searches for unstable periodic orbits in biological and medical applications have become of
interest. The motivations for this research range, in order of ascending complexity, from efforts to understand
the dynamics of simple sensory neurons, through speculations regarding neural coding, to the hopeful devel-
opment of new diagnostic and/or control techniques for cardiac and epileptic pathologies. Biological and
medical data are, however, noisy and nonstationary. Findings of unstable periodic orbits in such data thus
require convincing assessments of their statistical significance. Such tests are accomplished by comparison
with surrogate data files designed to test an appropriate null hypothesis. In this paper we test surrogates
generated by three different algorithms against correlated noise as well as stable periodic orbits. One of the
surrogates is new, and has been specifically designed to preserve the shape of the attractor. We discuss the
suitability of these surrogates and argue that the simple shuffled one correctly tests the appropriate null
hypothesis.@S1063-651X~99!00505-X#

PACS number~s!: 05.45.2a, 05.40.2a, 87.10.1e
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I. INTRODUCTION

Searches for the signatures of unstable periodic or
~UPOs! date from early analyses of nonlinear physical s
tems and were motivated by the development of new te
niques for the control of chaos@1#. Later the control of chaos
was demonstrated in biology using a rat brain slice prep
tion @2#, but those findings were not tested against surrog
data. Surrogate testing and concurrent assessments of th
tistical significance of the results for typical biological su
strates are essential, because high-dimensional behavio
‘‘noise’’ invariably contaminates the dynamics, and becau
such substrates are essentially nonstationary. Thus to be
tain that UPOs have been detected in such experimen
running assessment of the statistical precision of the find
is necessary.

A simple, statistically based recurrence method for cou
ing the signatures of encounters of the general trajectory w
an UPO of specific periodp in noisy data files has bee
developed. It was demonstrated in a noise contaminated
riodically forced Van der Pol oscillator@3# and later in the
hydrodynamically forced crayfish caudal photoreceptor s
tem @4,5#. Moreover, the method has recently been shown
be effective for detecting transient appearances and di
pearances of UPOs@6–8#, and thus is effective for analyse
of nonstationary systems. Later a more complex met
based on a dynamical transform of the data and a regrou
of the encounters with a fixed point of specific peri
emerged@9–11#. Other methods have more recently been
forth @12,13# but the questions we address here relate to
former two. They both operate on time series in the form
sequences of time intervals,T1 ,T2 , . . .Tn ,Tn11 , . . . . The
particular signature which they both search for is, in the fi
instance, evidence ofcrossingsof the line of periodicities,
Tn1p[Tn . We confine this discussion to cases of thre
dimensional motion projected onto a two-dimensional s
face of section. Such crossings may be represented by aspe-
PRE 591063-651X/99/59~5!/5235~7!/$15.00
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cific sequence of points in the phase spaceTn , versusTn1p .
In the case of the simple method@3–5# the signature of an

encounter is usually represented by a sequence of se
points as shown by the example given below. The transfo
method begins by searching for groups of points near the
of periodicities, thus signaling the possible existence o
periodic fixed point. What is important to note is that bo
the simple recurrence and the transform methods dep
upon the recognition in the data of short sequences of t
intervals that exhibit a very specific behavior. These se-
quences are therefore highly correlated over short times.
they carry much more information about the dynamical o
ject of which they are the signature than simple exponen
temporal correlations.

The primary experimental observable is the numberN of
times the general trajectory of the system encounters a
nature. The problem is to accurately assess the statis
confidence level associated with any measurement ofN. Nor-
mally the statistical confidence level can be assessed by
ing the findings using suitable surrogates constructed fr
the original data files@14# or from random number sets. Su
rogate data are a widely used tool in testing null hypothes
They are applied for rejecting hypotheses about the struc
of a given set of data, most often, for example, about the t
of correlations that may be inherent within the data. Idea
surrogate data retain all or most of the properties of the or
nal data, but are randomized with respect to signatures w
indicate the presence of the dynamics sought, in this case
signatures of encounters with UPOs. The simplest surrog
are obtained by randomly shuffling~SS! the locations of the
data points in the original file. The amplitude adjusted, Fo
rier transformed~AAFT! surrogates developed by Theileret
al. @14# are another commonly used algorithm. Below w
have developed a third type that can be called the attra
surrogate~AS!.

Each of these surrogates preserves some property o
original data set, while more-or-less effectively randomizi
5235 ©1999 The American Physical Society
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the signature being sought. The SS surrogates preserv
time interval histogram, but increase the disorder as in
cated by an increase of the bandwidth of the power spectr
AAFT surrogates preserve short time correlations which m
exist within the data; that is, they preserve the power sp
trum. This surrogate was designed to protect analyses f
being deceived by the presence of exponential correlation
otherwise random data sets; that is, fooled by ‘‘color
noise.’’ Finally, our new surrogate, AS, preserves both sh
time correlations and theshapeof the attractor in the phas
space; that is, the shape of the cloud of time intervals plo
in the Tn1p versusTn plane. Since both algorithms@3,9#
search for signatures based on phase space topology, th
sequences of time intervals which trace a specific shape
dicating the presence of an unstable periodic fixed point,
AS surrogate is appropriate for testing the null hypothe
when using these two methods from this point of view.

The purpose of this paper is to test the effectiveness
these three surrogate types and their immunity to the eff
of colored noise when used with the simple recurren
method@3–5#. It is important to perform these tests, sin
many research groups are now using the simple recurre
method for analyzing a wide variety of biological and me
cal data. These include findings of UPOs in thermally sen
tive sensory neurons@6,7,15# and hypothalamic neuron
@7,8#, immature hippocampal networks from rabbit bra
slices@16#, human epileptic@17# and cardiac@18# activities,
synaptic discharges from a central neuron@19#, and human
coordinated movements@20#. In all of these experiments th
simple recurrence method was adopted. Moreover, find
UPOs and estimating their eigenvalues rapidly in real tim
critical to applications involving the control of, for exampl
pathological cardiac or epileptic dynamics. Thus the simp
algorithm which consumes the least CPU time, but rema
effective and accurate, will be advantageous. We concl
below that the SS surrogates in conjunction with the sim
recurrence method best fulfill this requirement.

This paper is organized as follows. In Sec. II, we defi
the signature of an encounter of the general trajectory wi
period-1 UPO. We show an example encounter taken fr
rat facial cold receptor data@6#. Having defined the encoun
ter, only then is it possible to state the null hypothesis.
Secs. III and IV, we test the three surrogates against one-
two-dimensional Ornstein-Uhlenbeck~OU!, or colored,
noise and, in Sec. V, against a noise driven FitzHu
Nagumo~FN! dynamics@21#. Except for the FN dynamics
these data files were of a length typically found in biolog
We test the null hypothesis using a known number of
counters inserted into the random data sets. In Sec. VI,
outline the algorithm for generating the new AS surrogat
Finally, in Sec. VII, we summarize our findings and co
clude with a brief discussion. Our results indicate that
three surrogates are equally effective and that the me
used with any one of the three surrogates is not deceive
colored noise or by noisystableperiodic orbits~SPOs!. Only
the SS surrogate used with the simple recurrence algor
is, however, effective in distinguishing SPOs in low noi
data sets.

II. THE SIGNATURE, THE NULL HYPOTHESIS,
AND STATISTICAL SIGNIFICANCE TESTING

All the data with which we are concerned are in the fo
of sets of time intervals. In the case of our previous exp
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i-
m.
y
c-
m
in

d
rt

d

t is,
n-
e

is

of
ts
e

ce

i-

g
is

st
s
e

e

e
a

m

n
nd

-

.
-
e

s.

ll
od
by

m

i-

ments, the data are sets of interspike time intervals obta
from extracellular recordings of the activity of sensory ne
rons. However, any set of time intervals or any sequence
points from an embedding of a continuous dynamics are
propriately analyzed with this algorithm. An example da
set, from the rat facial cold receptor@6#, is shown in Fig.
1~a!, where we have plotted the first return map of the attr
tor, Tn11 versusTn . The signatureof an encounter of the
general trajectory with the period-1 UPO is defined as f
lows: any set of three points that approach the line of pe
odicities(45° line) with sequentially decreasing perpendic
lar distances, followed by a set of three points that dep
from it with sequentially increasing perpendicular distance.
An example signature obtained from the data set is show
Fig. 1~c!. One point, number 3, is common to the approac
ing and departing sequences. The specific set of inters
time intervals that makes this example is given by

@Tn ,Tn16#5@50,108,72,87,73,121# ms. ~1!

Since the signature has been defined, we can now stat
null hypothesis:Random files, including those with tempor
correlations, contain encounters with the defined signat
in numbers statistically indistinguishable from those found
data files containing the signatures of UPOs. The statistical
significance is assessed with a well-known measure:

K5
N2^Ns&

s
, ~2!

whereN is the number of encounters with the defined sign
ture found in the original data file,^Ns& is the mean numbe
ensemble averaged over the surrogate files, ands is the stan-
dard deviation. Assuming Gaussian statistics,K>3 indicates
that the finding is significant with greater than 99% con
dence; that is, the probabilityp that the finding in the original
data set is a random result isp<0.01 @22#.

III. ORNSTEIN-UHLENBECK NOISE

We now test the susceptibility of the three surrogates
deception by linearly correlated, colored noise as well
their effectiveness in detecting the signatures of kno
UPOs. First, we generate this noise using the o
dimensional Ornstein-Uhlenbeck process@23#,

ẋ52
1

t
x1

1

t
A2Dj~ t !, ~3!

where t is the correlation time, andj(t) is a Gaussian,
d-correlated, random process with zero mean and inten
D. Having generatedx(t), we then ‘‘threshold’’ it by tabu-
lating the sequence of time intervals between its posit
going zero crossings@24,25#. There is a problem with this
process in the case of one-dimensional OU noise in that
threshold crossing rate is theoretically divergent as has b
pointed out by Jung@26#. This is related to the fact that th
variance of the derivativeẋ(t) is unbounded. The correlatio
function of x(t) is exponential and is given by

^x~ t !x~s!&5
D

t
expF2

ut2su
t G . ~4!
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FIG. 1. ~a! Interspike time intervals from the rat facial col
receptor@6#. Data are plotted as a return map (Tn versusTn11).
Note the asymmetric shape of the data, indicating short term co
lations. ~b! Surrogate data from above figure, using AS algorith
The shape of the return map is nearly identical to that of the orig
data, whereas the SS and AAFT surrogates destroy the return
distribution. ~c! A typical UPO encounter from the rat facial col
receptor data. Three points converge towards the line of period
~circles! followed by three diverging points~triangles!.
The correlation function of the generated train of zero cro
ings has a rather complicated structure@27#: for small time
lag it shows an algebraic decay, whereas for large times
decay becomes exponential. Algebraic decay of correlati
indicates the existence of self-similarity in the process. F
this reason the stochastic sequence generated by the
dimensional~1D! OU process passed through a threshold
representative of so-called fractal noise@26#. The pathology
of x(t) generated in this way is evidenced by the time int
val distribution of the thresholded process~not shown here!
which is very sharply peaked for time intervals near zero.
spite of this difficulty, we include this process, since it
widely used to generate one-dimensional colored noise.

We have generated data sets of 3000 time intervals
length for four correlation times, spanning the biologica
relevant range, withD51. The number of encountersN was
obtained for each data set. In this case, these encounters
resent ‘‘false positives’’; that is, the number of times th
signature definition is satisfied simply by chance. We th
calculatedK using the three surrogate types. In all cases, 1
surrogate files were made from which^Ns& ands were ob-
tained. The results are shown in Table I~a!. We note that in
no case does theK value indicate statistical significanc
(uKu.2). The algorithm is therefore not deceived by color
noise nor by fractal noise for the correlation times show
and this is true for all three surrogates.

But are these surrogates effective in detecting statistic
significant numbers of encounters with UPOs? In order
explore this question, we inserted the encounter signa
specified by Eq.~1! into the noise files used in Table I~a!. An
encounter signature was inserted midway between every
of ‘‘false positive’’ encounters previously found whic
bracketed at least ten time intervals. The six existing ti
intervals were overwritten by those of Eq.~1! in order to
maintain the file length constant at 3000 intervals. In t
way, N was significantly increased in comparison to t
original data file. The results are displayed in Table I~b!,
where the new numberN1E, together with the number o
encounters inserted,E ~in parentheses!, are shown in the first

TABLE I. Linear, exponentially correlated noise: one
dimensional Ornstein-Uhlenbeck process.

t5 25 ms 50 ms 75 ms 100 ms

~a! Noise alone
N 96 85 92 87
^Ns& 95 98 98 100
s 11.3 9.5 9.2 8.7
K(SS) 0.09 21.37 20.65 21.49
K(AAFT) 20.17 21.10 20.55 21.12
K(AS) 20.12 20.96 20.48 21.27

~b! Noise plus added encounters,~E!

N1E,(E) 166 ~70! 150 ~65! 157 ~65! 152 ~65!

^Ns& 107 111 111 113
s 11.7 10.3 13.9 12.9
K(SS) 5.02 3.78 3.30 3.02
K(AAFT) 4.78 3.12 5.28 3.12
K(AS) 4.16 2.66 2.65 3.28
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5238 PRE 59DOLAN, WITT, SPANO, NEIMAN, AND MOSS
row. Now theK values all indicate the presence of UPO
with statistical significance at the 99% level or greater exc
for the values ofK(AS) for the middle two correlation times
for which the confidence levels are somewhat better t
95%.

Next we repeat these tests using two-dimensional
noise@26# with a single correlation time generated by

ẏ52
1

t
~y2x!,

~5!

ẋ52
1

t
x1

1

t
A2D j~ t !,

where the solutionsy(t) are thresholded, and all other co
ditions are the same as described above. The power spec
and correlation function ofy(t) are given by

Syy~v!5
2D

~t2v211!2
,

~6!

^y~ t !y~s!&5
D

2t2
~t1ut2su!expF2

ut2su
t G ,

where y(t) was thresholded in the same way as descri
above. The correlation function of the train of zero crossin
generated by this process has no algebraic decay, becau
additional differential equation in Eq.~5! destroys the fracta
properties of the thresholded process@26#.

The results are given in Table II~a! for the noise alone and
in Table II~b! for the same noise files but with inserted e
counters. We note that as in the one-dimensional case,
of the surrogates are deceived by colored noise (uKu!2),
and they all are equally effective in detecting UPOsK
@3). The detection confidence levels are, however, so
what higher in this case than for the one-dimensional no
This is likely due to the fact that the noise files in the on
dimensional case are more disordered~having larger densi-

TABLE II. Linear, exponentially correlated noise: two
dimensional Ornstein-Uhlenbeck process.

t5 25 ms 50 ms 75 ms 100 ms

~a! Noise alone
N 180 187 185 190
^Ns& 174 174 175 174
s 15.6 15.3 17.5 15.2
K(SS) 0.39 0.85 0.57 1.05
K(AAFT) 0.22 1.01 0.55 0.96
K(AS) 0.15 0.56 0.69 0.82

~b! Noise plus added encounters,~E!

N1E,(E) 275 ~95! 287 ~100! 292 ~107! 290 ~100!
^Ns& 172 173 177 175
s 13.9 18.8 14.8 16.5
K(SS) 7.38 6.07 7.75 6.99
K(AAFT) 6.44 12.35 9.72 12.32
K(AS) 5.89 8.77 6.03 6.06
t

n
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ties of shorter time intervals! owing to the indeterminate
threshold crossing rate~which theoretically approaches infin
ity!. Thus the null hypothesis can be rejected with high co
fidence levels for all three surrogates for the noise gener
by both one- and two-dimensional OU processes.

IV. HARMONIC NOISE

Another kind of OU noise which possesses a narrow-b
spectrum is the so-called harmonic noise. We generate a
quence of zero crossing times from a damped linear h
monic oscillator driven by additive white noise@28# accord-
ing to

ẍ1G ẋ1v0
2x5A2DG j~ t !, ~7!

whereG is the damping,v0 is the natural frequency andj(t)
is Gaussian,d-correlated, zero mean noise with unit standa
deviation. The power spectrum of harmonic noise is

Sxx~v!5
2DG

v2G21~v22G2!2
. ~8!

Again, we thresholdedx(t) to make 3000 point time interva
files. We generated data files for four natural frequenc
corresponding to periods that equal the four correlation tim
of Tables I and II. In order to maintain the same width of t
maximum in the power spectrum ofx(t) for these different
frequencies, we set the dampingG5v0/2 in each case. The
results are given in Table III. Table III~a! for harmonic noise
alone shows that the algorithm is not deceived by the p
ence of SPOs in the data and that all three surrogates
equally immune. Again we inserted UPOs as describ
above. Table III~b! shows that the algorithm continues
detect UPOs within the harmonic noise with statistical s
nificance and that again there is nothing to choose among
surrogates. We can conclude that the null hypothesis ca
rejected also in the case of harmonic noise.

TABLE III. Harmonic noise.

v5 251 rad/s 126 rad/s 84 rad/s 63 rad

~a! Noise alone
N 163 164 196 171
^Ns& 161 179 182 184
s 20.1 20.1 20.5 21.0
K(SS) 0.10 20.75 0.68 20.62
K(AAFT) 0.46 20.50 1.21 20.55
K(AS) 0.86 20.56 0.90 20.42

~b! Noise plus added encounters,~E!

N1E,(E) 234 ~71! 226 ~62! 253 ~57! 226 ~55!

^Ns& 167 179 183 185
s 16.8 19.0 20.3 12.2
K(SS) 3.98 2.48 3.44 3.36
K(AAFT) 3.32 3.33 3.64 3.12
K(AS) 3.99 3.44 3.28 2.79
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V. NOISY LIMIT CYCLE

Since biological data can also contain stable limit cycl
it is necessary to test the algorithm and surrogates with
object as well. For this purpose we use a stocha
FitzHugh-Nagumo neuron model@21# governed by

e ẋ5x2
x3

3
2y,

~9!
ẏ5x1a1A2D j~ t !,

where e50.01, a is the control parameter, andj(t) is
Gaussian white noise. Fora,1 this model possesses a stab
limit cycle, while for a.1 the spikes appear due to noi
only @29#. We study interspike intervals generated by th
model in two different regimes:~a! stable limit cycle (a
50.5) and~b! subthreshold spike generation due to no
(a51.05). We underline that in this case the threshold is
integral part of the model. The results are presented in Ta
IV where we have tested the surrogates in these two regi
for two noise levels. Note that all surrogates result inK val-
ues indistinguishable from zero. The sole exception occur
the case of SS surrogates for the low noise, suprathres
regime @Table IV~a!#. The negative value, whereK(SS)5
22.46, indicates the existence of a stable limit cycle. Th
surrogates are thus not confused by the presence of n
limit cycles, and one of them~SS! can indicate the presenc
of limit cycles in the low noise case.

VI. A NEW SURROGATE

The method of surrogate data has been developed w
the frame of dimensional analysis@35,14#. It is important to
emphasize that surrogate testing is designed to disting
whether a measured observable reflects some characte
of a low-dimensional, nonlinear dynamical process rat
than that of a linear or nonlinear transformation of a pur
random process. The main idea is to construct surrogate
that coincide with the given observable with respect to so
special properties, e.g., the probability density or the po

TABLE IV. FitzHugh-Nagumo neuron model.

D5 0.01 0.05

~a! Limit cycle (a50.5)
N 3631 3817
^Ns& 3875 3824
s 99.0 94.9
K(SS) 22.46 20.07
K(AAFT) 21.48 0.89
K(AS) 21.85 0.66

~b! Noise induced oscillations (a51.05)
N 3793 3785
^Ns& 3801 3793
s 82.2 56.36
K(SS) 20.58 20.14
K(AAFT) 20.49 20.16
K(AS) 20.90 20.16
,
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e
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spectrum, but that are randomized with respect to all ot
properties. The set of the several realizations of such a
cess is called the set of surrogate data. The original data
the sets of surrogate data are compared using test stati
such as the Savit-Green statistic@30#, the nonlinear predic-
tion error@31,32#, or the Brock-Dechert-Scheinkrann statist
@33#.

In this paper surrogate data are constructed for dis
guishing purely noisy processes from processes that
noisy but have a dynamical origin. In addition to the we
known SS and AAFT type surrogates, we have designe
new surrogate that preserves short-scale temporal cor
tions and also maintains the attractor’sshape~AS! in two
dimensions. Since we assume that the large majority of
counters can be caused only by an underlying nonlinear
namics that contains an UPO, we expect the number of
counters of the trajectories with that UPO to be a power
test statistic.

The new surrogates are obtained by approximating
experimental data with a second order Markov model. D
sets produced by such processes are completely chara
ized by their first return map. An example map, taken fro
actual biological data, is shown in Fig. 1~a!.

Technically, the AS surrogates are produced in the f
lowing way. Uncorrelated data, which maintain the probab
ity distribution, are created by simple shuffling of the orig
nal data. Data which appear to result from a second or
Markov process are then generated as follows.

~1! The amplitudes are adjusted in order to conform to
uniformly distributed process.

~2! A desired binning is introduced, meaning that t
phase space is tiled by squares with a fixed side length.

~3! The transition matrixTi j is estimated from the relative
frequencies that the data visit the squares identified by
coarse-grained~bin! coordinates (i , j ).

~4! Symbol sequences, corresponding to the coa
grained dynamics, are produced by ‘‘iterating’’ the transiti
matrix: The number of symbols is related to the number
bins. Initially an arbitrary symbols1 is chosen. The succeed
ing symbol,st11, of the symbolst is set to a realization of
the discrete distributionP(st115 i )5Tst ,i /( iTst ,i .

~5! A small uniformly distributed noise is added, so th
the backwards adjusted amplitudes can be performed.

~6! The amplitude is adjusted backwards.
The amplitude adjustment is a purely technical elem

required for having equiprobable bins~symbols!. Since the
whole procedure is sensitive to the number of bins chos
several such numbers must be tested in order to ensure
the bin number does not influence the main result of the t
One surrogate calculated following this procedure using
original data shown in Fig. 1~a! is shown in Fig. 1~b!. The
shape of the attractors in the two figures can be compa
The effectiveness of the AS surrogate is demonstrated in
preceding sections.

VII. SUMMARY AND DISCUSSION

In this work we have tested the simple topological rec
sion method for detecting and counting UPOs in noisy d
files against the possibility that it can be deceived by tem
rally correlated, or colored, noise. In addition, we have tes
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5240 PRE 59DOLAN, WITT, SPANO, NEIMAN, AND MOSS
three different surrogates both for their immunity to dece
tion by colored noise and for their effectiveness in reject
the null hypothesis using noise files with known numbers
UPOs inserted. We have performed these tests using t
different generators of colored noise including two syste
which produce noisy SPOs. Our findings can be summar
as follows.

~1! The three surrogates are equally immune to decep
by colored noise in data sets generated by the one- and
dimensional OU process, by the noise driven linear harmo
oscillator, and by the noisy FN system, that is, by all t
dynamical systems used in the tests.

~2! The simple topological recursion algorithm is equa
effective in detecting known numbers of UPOs inserted i
the noise data using any of the three surrogates.

~3! The algorithm and the three surrogates are immun
deception by the presence of SPOs in the data.

It is therefore safe to use the topological recursion alg
rithm together with SS surrogates. In many diagnostic and
possible therapeutic applications, for example those req
ing dynamical control, computational speed is essen
therefore the simpler algorithm is advantageous. It is imp
tant that this be established satisfactorily within the comm
nity @36#.

It is worth commenting further on the SS surroga
Simple shuffling offers the advantage that it realizes a dir
replacement of the sequential order, which defines an
counter, with a randomly chosen sequence. We can there
be certain thattrue encounters with UPOs are not preserv
in the SS surrogates. Thus all encounters found in the
surrogates must befalseones. The key to understanding th
assertion is the definition of the signature sought in the d
files. As defined, the signature is a sequence of time inter
that behave in a very specific way~three points which ap-
proach the line of periodicity at sequentially decreasing d
tances followed immediately by three which depart at
quentially increasing distances!. Such sequences ar
necessarily highly correlated, but they carry far more inf
mation than sequences that are simply exponentially co
lated. Since the information is contained in the sequen
order, a correct surrogate is one which replaces the seq
tial order with a randomly chosen sequence. The SS su
n
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gate is the only one of the three which does this. Surroga
which preserve correlations without regard to sequential
der, such as the AAFT and AS used here, might prese
true encounters.

The AAFT put forth by Theileret al. @14# is the most
celebrated of the correlation preserving surrogates. Howe
we must remember that it was designed to test the result
correlation dimension algorithms and their variants. Such
gorithms search for nonlinear correlations and can be
ceived by the presence of linear correlations in the data.
AAFT surrogate was never designed to test sequentially
dered events as represented here by the defined signatu
UPOs. It was designed, among other things, to preserve
power spectrum of the original data, thus avoiding the int
duction of more disorder, or ‘‘whitening’’ of the power spec
trum. But the ‘‘whitening’’ of the power spectrum in surro
gates has a certain advantage. As we have shown previo
@34#, the SS surrogate has the added advantage in this a
cation of being able to distinguish stable limit cycles fro
UPOs if the noise is not too large. It does so by detecting
absenceof topological signatures of instability in the da
files compared to the surrogates. For data files which are
too noisy, SS surrogates are more disordered than the o
nal data, that is, SS surrogates ‘‘whiten’’ the power spec
One can then find more ‘‘false positives’’ in the surroga
compared with the data where, for purely stable periodicit
one often finds zero or insignificantly small numbers of e
counters. ThusN,^Ns&, leading to negative values ofK that
are the signal of the presence of stable orbits. However,
SPOs accompanied by large inherent noise intensities,
always true thatK→0 as is the case here in Sec. V.
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